_
α
•
α
\Box
N
0
α
Ξ
_
٥
`
₹
≷
_
 a
٥
#
_

Title Hydraulics and Hydrology	Code 1010105111010130110
Field Civil Engineering Extramural Second-cycle Studies	Year / Semester 1 / 1
Specialty	Course
•	core
Hours	Number of credits
Lectures: 2 Classes: 10 Laboratory: - Projects / seminars: -	3
	Language
	polish

Lecturer:

dr inż. Marcin Skotnicki Instytut Inżynierii Środowiska tel. 61 665 24 69, fax. 61 665 24 69 e-mail: marcin.skotnicki@put.poznan.pl

Faculty:

Faculty of Civil and Environmental Engineering ul. Piotrowo 5 60-965 Poznań tel. (061) 665-2413, fax. (061) 665-2444 e-mail: office_dceeaf@put.poznan.pl

Status of the course in the study program:

core

Assumptions and objectives of the course:

Recognition of theoretical and practical problems of fluid flows

Contents of the course (course description):

Forces in fluids. Statics of fluids: basic equation of fluid equilibrium and its application, fluid instruments for pressure measurement, hydrostatic pressure on flat and curved surfaces, diagram of pressure, buoyancy. Dynamics of ideal fluid: continuity equation, Bernoulli?s equation and its interpretation. Motion of real fluid: Reynolds?s experiment, laminar and turbulent flow. Hydraulics of pipelines: linear and local head losses, diagram of piezometric head pressure, hydraulic calculation of single pipeline, siphon, calculation of long pipelines. Free surface flow: steady state flow in open channels, sewage channels, critical flow. Flow in porous media: Darcy?s law, hydraulic conductivity coefficient, inflow to drainage ditch, wells. Water cycle. Characteristic and measurement of flow in rivers. Stage measurements. Design floods.

Introductory courses and the required pre-knowledge:

Mathematics, General Physics

Courses form and teaching methods:

Lectures, Classes

Form and terms of complete the course - requirements and assessment methods:

Written tests, examination

Basic Bibliography:

Additional Bibliography: